
Report No. CSL/SNA 94-3

Implementation

of

TTCN Operational Semantics in Estelle

Luoming Hou
Department of Electronic Engineering and Computer Science

George Washington University
Washington, DC

and

Jean-Philippe Favreau and Debra Tang
Computer Systems Laboratory

National Institute of Standards and Technology
Department of Commerce
Gaithersburg, MD 20899

This paper was presented at the International Workshop on Protocol Protocol Test Systems (IWPTS) 94 held in
Tokyo in November 1994.

1

Implementation of TTCN Operational Semantics in Estelle

Luoming Hou, Jean-Philippe Favreau, and Debra Tang

Department of Electronic Engineering and Computer Science
George Washington University, Washington, DC, USA

System and Network Architecture Division, Computer Systems Laboratory
National Institute of Standards and Technology, Gaithersburg, MD, USA

With an upgraded version of the Tree and Tabular Combined Notation (TTCN)
that encompasses concurrency, it is now possible to foresee a new generation of Abstract
Test Suites (ATSs) and Means Of Testing (MOT) for communication protocols. Indeed,
the inclusion of concurrency/parallelism allows the complete description of ATSs in
TTCN, including the upper tester behavior. This paper introduces a new prototype
technology that automates the production of MOT from an ATS completely specified in
TTCN. This technology is based on an implementation of the operational semantics of
TTCN in Estelle.

1. INTRODUCTION

This paper
1
 presents some of the results from a broad initiative on conformance

testing. The Computer Systems Laboratory (CSL) of the National Institute of Standards
and Technology (NIST) is engaged in an international initiative in conformance testing.
CSL partners include the Telecommunications Laboratories (TL), Taiwan, The George
Washington University (GWU), United-States, and the Institut National des
Télécommunications (INT, France. The objective of this initiative is to design and
implement a generic test tool generator that takes as input an abstract test suite completely
specified in the Tree and Tabular Combined Notation (TTCN) and generates a test tool,
then to apply this resulting test tool to the Transaction Processing protocol (OSI/TP) [1].
The project incorporates a number of fundamental blocks intended to secure the
foundations for protocol testing, including the following components:
- Realization of the COS/POSI/SPAG (CPS) Technical Framework Specification

[2,3];

1This work is a contribution of the National Institute of Standards and Technology and is not subject to copyright.

2

- Realization of a TTCN to Estelle Test Engine Generator;
- Validation of the Estelle OSI/TP formal description; and
- Validation of a subset of the OSI/TP Abstract Test Suite (ATS).

This paper focuses on the TTCN to Estelle Test Engine Generator. This Test
Engine Generator takes as input a TTCN ATS, performs syntax and semantics checking,
and generates the kernel of a Means of Testing (MOT) for the relevant protocol including
all Lower Tester and Upper Tester components. Our intent is to use the Test Engine
Generator with a subset of OSI/TP ATS, and generate a test engine for an OSI/TP MOT.
The resulting test engine will be driven by the implementation of the CPS and applied to
OSI/TP products.

2. MOTIVATIONS

The previous version of the Tree and Tabular Combined Notation (TTCN) [4] did
not include concurrent TTCN [5]. This limitation did prevent definition of Abstract Test
Suites (ATS) for multi-party testing and the TTCN description of the behavior of upper
tester(s). Concurrent TTCN resolved these problems but created a higher level of
complexity in the implementation of the ATS. This has lead to our decision of
implementing the operational semantics of TTCN in Estelle [6]. Indeed, Estelle supports
most of the required attributes, in particular: Estelle is a member of Formal Description
Technique (FDT) family which has a formal semantics and Estelle supports all the
distributed and parallel/concurrent properties that TTCN Extension requires. Moreover,
NIST has built a set of tools, the Portable Estelle Translator (PET) [7] and the Distributed
ImplemeNtation GeneratOr (DINGO) [8], which supports the distributed implementation
of Estelle formal descriptions.

Another motivation was related to the current problems in the area of ATS
validation. Most of the times - if not all - ATSs are the results of manual generations.
These types of generation result in ATSs that are error prone and difficult to maintain. A
tool that automates the implementation of the ATS would accelerate the availability of
Means of Testing (MOT) that could be run against reference implementation or simulated
protocol formal description. Therefore, such a tool would allow a better validation of the
ATS and result in a simpler ATS and MOT maintenance process.

3. TECHNICAL APPROACH

Rather than to develop a specific test engine for a specific ATS and for a specific
protocol, the goal is to develop a generic test engine for any test suite described in IS
TTCN (including the complete specification of the upper tester behavior). The inputs to
the tool are the TTCN.MP file, the Protocol Information Conformance Statement (PICS)
and Protocol Implementation eXtra Information (PIXIT). The tool outputs Estelle, C++
and ASN.1. When these pieces of code are compiled and linked, the resulting Executable
Test Suite (ETS) is to be driven by a test engine driver (i.e., implementation of the CPS
Technical Specification). The tool development has been structured into the following
stages:
• TTCN parser: The input of the parser is the TTCN.MP containing the ATS. The

ATS is validated against TTCN syntax and semantics rules.

3

• TTCN Operational Semantics. The TTCN operational semantics is defined using
a combined model of Estelle and ASN.1. In this approach, TTCN Abstract
Service Primitive and Protocol Data Unit (ASP/PDU) are mapped into ASN.1; and
TTCN Test Configurations are mapped into Estelle Constructs. A tree interpreter
written in Estelle captures the dynamic semantics of TTCN behavior tree.

• Code generation: This is a stage that implements the mapping (transformation)
between TTCN and Estelle/ASN.1 and generates C/C++ code. The C code for
ASN.1 ASP/PDU is produced by PEPY [9] and C++ code for TTCN test
configurations and trees is produced by a translator and PET/DINGO.
In parallel with this work, another team has been implementing the basic

functionality of the test engine driver. The test engine driver is based on the Technical
Framework Specification [2,3]. The Technical Framework Specification results from an
initiative of the Corporation for Open Systems (COS), the Standard Promotion and
Application Group (SPAG) and the Promoting Conference for OSI (POSI), Japan, and
seeks to establish common functions, process architectures, and criteria which may be
used throughout the world for the development, procurement and use of conformance test
systems. The objective of CPS is to define an architecture for conformance test tools
which is consistent with the OSI testing methodology, to rationalize operating
environments, and to define interchangeable and reusable components of test systems.
This initiative recognizes that test systems implement some of the functionality required by
the OSI framework for conformance testing. A Process Model is introduced which
defines a model for activities that take place during conformance testing. To each activity
corresponds functions that could be made available in test systems in order to support the
test operator in carrying out these activities. Functions include PICS and PIXIT
administration, MOT configuration, static conformance review, test campaign
management, test case selection, Protocol Conformance Test Report (PCTR)
management, and System Conformance Test Report (SCTR) management.

Figure 1. Tree-Like Test Configuration in TTCN

4. TTCN OPERATIONAL SEMANTICS IN ESTELLE

4.1. Parallel/Concurrent Operational Semantics

In the IS TTCN with Extensions [4,5], the test configuration notation is used to
describe the parallel/concurrent testing behaviors. In this notation, an ATS contains one

4

or more test configurations. Each test configuration is a tree-like structure consisting of
one Main Test Component (MTC) and zero or more Parallel Test Components (PTCs).
Cooperation Points (CPs) are employed to connect MTC and PTCs for exchanging the
Cooperation Messages (CMs); Points of Control and Observation (PCOs) are employed to
connect the MTC/PTCs with the test environment. The body of the MTC/PTC is the
normal TTCN behavior tree where an MTC acts as a test case and each PTC acts as a test
step. Every test case adheres to one particular test configuration. Different test steps may
run in parallel. ASPs/PDUs may be distributed over different PCOs.

Example 1. Tree-Like Test Configuration. In Figure 1, a test configuration (CONFIG_1)
is defined as three test components: Master, Slave1 and Slave2. CONFIG_1 connects the
Master (MTC) with Slave1 (PTC1) and Slave2 (PTC2) by two cooperation points CP1
and CP2. Two points of control and observation PCO1 and PCO2 are used in turn to
connect Slave1 and Slave2 to the testing environment. Master will initiate Slave1 and
Slave2 using the CREATE statements. Then, Slave1 and Slave2 will run in parallel and
report the results to Master through CP1 and CP2.

4.2. Implementing the Parallel/Concurrent Semantics in Estelle

The tree-like test configuration in parallel/concurrent TTCN can be fully
implemented by Estelle using the following strategy2:
• We define a generic Estelle specification MOTEstelle which has two Process

modules -- TEEstelle (Test Engine) and PCOEstelle. The TEEstelle module has its own
sub-module TCEstelle (Test Component). TCEstelle has two different module bodies --
MTCEstelle and PTCEstelle. This specification MOTEstelle is independent from the
abstract test suite being processed.

• The MTC and PTCs in TTCN are mapped into TCEstelle instances. The CPs
connecting MTC and PTCs in TTCN are mapped into channel instances
connecting TCEstelle instances. The CMs exchanged through CPs between MTC and
PTC or between PTCs are mapped into interactions going through channels in
Estelle. In this approach, test management is realized via the actual implementation
of Estelle semantics of the parallel TCEstelle instances.

• The PCOs in TTCN are mapped into the PCOEstelle module instances, each of
which is connected to an instance of TCEstelle corresponding to MTC or PTC in
TTCN. The PCOEstelle module body employs primitives to interface with PEPY and
ISODE tools so that the ASN.1 ASP/PDU from the Test Engine (or the IUT) can
be encoded (or decoded) and passed down (or delivered to) the IUT (or Test
Engine). The advantage of this approach results from the properties of DINGO
which allows the Estelle module instances to be distributed over different
machines. Therefore, the multi-party and distributed TTCN operational semantics
is implemented by distributing PCOEstelle module instances over different machines.

• We translate all the ASPs/PDUs/CMs types/constraints in TTCN into PEPY
oriented ASN.1 types/values. Later, PEPY generates the encoding/decoding

2In this Section acronyms/names associated with Estelle constructs are tagged with a subscript “Estelle” (e.g.,
SPECEstelle).

5

functions automatically and the encoded/decoded ASN.1 values are
passed/obtained to/from ISODE tool. PEPY provides for the automated
implementation of ASN.1 encoding/decoding rules.

• We write a TTCN tree interpreter which is the core part of the TCEstelle module
body. Together with the C++ implementation of the Estelle primitives, this tree
interpreter handles all the TTCN expressions, timer operations, assignments as
well as constraint references.

Example 2. Mapping TTCN Test Configuration Into Estelle. In this example, the test
configuration CONFIG_1 given in Example 1 is mapped into one instance of Estelle
specification MOTEstelle.

Figure 2. Mapping TTCN Test Configuration into Estelle

A full implementation of TTCN operational semantics requires mapping all the
TTCN sources into Estelle and ASN.1. The core parts of the mapping mechanisms are
summarized in Table 1.

5. AUTOMATED GENERATION OF ETS FROM ATS

Based on the TTCN operational semantics defined in Estelle and ASN.1, we are
developing a tool set that automatically derives the ETS from the ATS. This tool set
consists of three major sub-tools: (1) a TTCN parser, (2) an ASN.1 translator and (3) an
object code generator. The general flow is presented in Figure 3. The text below
describes briefly the different steps in terms of input used and resulting output.

6

TTCN Parser:
Input: The input for the TTCN Parser is the ATS (TTCN.MP). This ATS makes use of
concurrent TTCN to describe the behavior of the Upper Tester (i.e., no pseudo code or
comments describing the Upper Tester).
Output: The TTCN Parser produces two types of intermediate codes: Estelle oriented
intermediate code and ASN.1 oriented intermediate code. The Estelle oriented
intermediate code contains all source code information of the TTCN.MP that passed
syntax/semantics checking (except for ASN.1 definitions) and can be easily translated into
different object codes. The ASN.1 oriented intermediate code contains all the source
ASN.1 type definitions, ASN.1 ASP/PDU/CM type definitions and their constraints
definitions found in the TTCN specification.

TTCN Source ASN.1/Estelle Objects

ASP Types ASN.1 Type definitions
PDU Types ASN.1 Type definitions

ASP Constraints ASN.1 Value Definitions
PDU Constraints ASN.1 Value Definitions

Test Configurations Estelle Module Instances
Test Components Estelle Module Instances

Cooperation Points Estelle Channel Instances
Cooperation Messages Estelle Interactions
Behavior Tree Logic Number Tables

TTCN Statement Numbers input to Tree Interpreter

Table 1. Mapping Mechanisms
ASN.1 Translator:
Input: The ASN.1 Translator uses the standard ASN.1 module definition combined with
the restrictions/extensions from the TTCN standard;
Output: The tool produces an ASN.1 module definition in a format compatible with
PEPY [9] (i.e., the PEPY-style ASN.1 module definition).

Object Code Generator:
Input: The Object Code Generator takes as input the intermediate code which defines all
the global/local TTCN tabular objects classified and indexed and all the TTCN behavior
trees numbered into tables.
Output: Three types of outputs result from the execution of the Object Code Generator.
1. The fully numbered tables for all TTCN trees, which will be dynamically loaded and run
by the tree interpreter;
2. The Estelle module instances and variables;
3. The system dependent C/C++ code which supports the tree interpreter.

7

ATS
(TTCN. MP)

Intermediate
Code

Tree
Tables

Estelle
Objects

System
Objects

ASN.1 file

PEPY-Style
ASN.1 Module

Estelle
Spec MOT

C/C++
Codes

Encoder/
Decoder

ETS

TTCN PARSER

OBJECT CODE
GENERATOR

ASN.1
TRANSLATOR

PET/DINGO PEPY

COMPILER
& LINKER

Figure 3. ATS to ETS - Illustrated Process

6. APPLICATION TO THE TRANSACTION PROCESSING ATS

Current plans include applying the tool to the Transaction Processing (OSI/TP)
ATS. This section provides some background information about OSI/TP, the current
status of the ATS, and the type of application planned.

The OSI Transaction Processing protocol (OSI/TP) [1] defines services and
functions to support distributed tasks for which it is important to maintain the ACID
properties: Atomicity, Consistency, Isolation, and Durability. The Atomicity and
Consistency properties combined guarantee that transactions are atomic operations and
that all sub-tasks involved in a transaction have the same outcome (success or failure).
The Isolation property guarantees that separate transactions progress independently from
each other. Finally, the Durability property guarantees that adequate logging facilities
exist to maintain a trace of the outcome of transactions. The OSI/TP protocol is based on

8

a two-phase commit protocol, with additional recovery mechanisms to handle
communication failures and system crashes. Typical uses of the OSI/TP protocol include
large distributed database systems.

ISO has started to work on the specification of a conformance test suite for the
OSI/TP protocol. Currently, the activities in ISO focus on the specification of a test suite
structure and test purposes. In Japan, INTAP has defined a very extensive list of test
purposes and test bodies for the transaction processing protocol. The ultimate goal is to
reach international agreements on a complete abstract test suite. Completion requires the
validation of the INTAP ATS. This ATS is being reviewed via a joint effort between
Europe, North-America and Japan.

The OSI/TP ATS is very complex and offers a good test for the evaluation of the
Test Engine Generator. On the other hand, there are some technical problems to resolve.
Though, the INTAP ATS is being updated to IS TTCN with Extension and the Test
Management Protocol Data Units (TMPDUs) are not specified using concurrent TTCN.
Because of these situation, the plans are to select a subset of the ATS and bring it to the
level required by the tool. When this step is completed, we plan to run the resulting
OSI/TP test tool against an OSI/TP product.

REFERENCES

1. International Standard Organization. Information Technology - Open Systems Interconnection -
Distributed Transaction Processing, IS 10026, May 1992.

2. The CPS Forum Technical Framework Specification for Conformance Testing SPAG S.A., 165,
Avenue Louise Box 7, B-1050 Brussels, Belgium, 1991.

3. Advanced Testing Methods (ATM); Guide of the Implementation of an ISO 9646 Compliant
Open Test Environment, European Telecommunications Standards Institute, Route de Lucioles,
Sophia Antipolis, Valbonne, France, 1993.

4. International Standards Organization. Open Systems Interconnection - OSI Conformance Testing
Methodology and Framework, Part 1-7 ISO/IEC JTC 1 International Standard 9646, December
1992.

5. International Standards Organization. Open Systems Interconnection - OSI Conformance Testing
Methodology and Framework, Part 3: TTCN Extensions, ISO/IEC JTC 1 DAM-1, 1993.

6. International Standard Organization. Information Processing Systems, Open Systems
Interconnection,. Estelle - A Formal Description Technique based on an Extended State
Transition Model, IS-9074, 1989.

7. Sijelmassi, R.; Strausser B., The Distributed Implementation Generator: an Overview and User
Guide, Report No. NCSL/SNA - 91/2, National Institute of Standards and Technology,
Gaithersburg, MD 20899, U,S.A., January 1991.

8. Sijelmassi, R.; Strausser B., The Portable Estelle Translator: an Overview and User Guide,
Report No. NCSL/SNA - 91/2, National Institute of Standards and Technology, Gaithersburg,
MD 20899, U.S.A., January 1991.

9. Rose, T.M.; Onions, J.O., Robbins, C.J., The ISO Development Environment User's Manual,
Volume 1-4. University of Pennsylvania, Department of Computer and Information Science,
Moore School, Attn: David J. Farber, 200 South 33rd Street, Philadelphia, PA 19104-6314,
U.S.A.

